75 research outputs found

    AT-GIS: highly parallel spatial query processing with associative transducers

    Get PDF
    Users in many domains, including urban planning, transportation, and environmental science want to execute analytical queries over continuously updated spatial datasets. Current solutions for largescale spatial query processing either rely on extensions to RDBMS, which entails expensive loading and indexing phases when the data changes, or distributed map/reduce frameworks, running on resource-hungry compute clusters. Both solutions struggle with the sequential bottleneck of parsing complex, hierarchical spatial data formats, which frequently dominates query execution time. Our goal is to fully exploit the parallelism offered by modern multicore CPUs for parsing and query execution, thus providing the performance of a cluster with the resources of a single machine. We describe AT-GIS, a highly-parallel spatial query processing system that scales linearly to a large number of CPU cores. ATGIS integrates the parsing and querying of spatial data using a new computational abstraction called associative transducers(ATs). ATs can form a single data-parallel pipeline for computation without requiring the spatial input data to be split into logically independent blocks. Using ATs, AT-GIS can execute, in parallel, spatial query operators on the raw input data in multiple formats, without any pre-processing. On a single 64-core machine, AT-GIS provides 3× the performance of an 8-node Hadoop cluster with 192 cores for containment queries, and 10× for aggregation queries

    Integrating Scale Out and Fault Tolerance in Stream Processing using Operator State Management

    Get PDF
    As users of big data applications expect fresh results, we witness a new breed of stream processing systems (SPS) that are designed to scale to large numbers of cloud-hosted machines. Such systems face new challenges: (i) to benefit from the pay-as-you-go model of cloud computing, they must scale out on demand, acquiring additional virtual machines (VMs) and parallelising operators when the workload increases; (ii) failures are common with deployments on hundreds of VMs - systems must be fault-tolerant with fast recovery times, yet low per-machine overheads. An open question is how to achieve these two goals when stream queries include stateful operators, which must be scaled out and recovered without affecting query results. Our key idea is to expose internal operator state explicitly to the SPS through a set of state management primitives. Based on them, we describe an integrated approach for dynamic scale out and recovery of stateful operators. Externalised operator state is checkpointed periodically by the SPS and backed up to upstream VMs. The SPS identifies individual operator bottlenecks and automatically scales them out by allocating new VMs and partitioning the check-pointed state. At any point, failed operators are recovered by restoring checkpointed state on a new VM and replaying unprocessed tuples. We evaluate this approach with the Linear Road Benchmark on the Amazon EC2 cloud platform and show that it can scale automatically to a load factor of L=350 with 50 VMs, while recovering quickly from failures. Copyright Š 2013 ACM

    SQPR: Stream Query Planning with Reuse

    Get PDF
    When users submit new queries to a distributed stream processing system (DSPS), a query planner must allocate physical resources, such as CPU cores, memory and network bandwidth, from a set of hosts to queries. Allocation decisions must provide the correct mix of resources required by queries, while achieving an efficient overall allocation to scale in the number of admitted queries. By exploiting overlap between queries and reusing partial results, a query planner can conserve resources but has to carry out more complex planning decisions. In this paper, we describe SQPR, a query planner that targets DSPSs in data centre environments with heterogeneous resources. SQPR models query admission, allocation and reuse as a single constrained optimisation problem and solves an approximate version to achieve scalability. It prevents individual resources from becoming bottlenecks by re-planning past allocation decisions and supports different allocation objectives. As our experimental evaluation in comparison with a state-of-the-art planner shows SQPR makes efficient resource allocation decisions, even with a high utilisation of resources, with acceptable overheads

    CubicleOS: A library OS with software componentisation for practical isolation

    Get PDF
    Library OSs have been proposed to deploy applications isolated inside containers, VMs, or trusted execution environments. They often follow a highly modular design in which third-party components are combined to offer the OS functionality needed by an application, and they are customised at compilation and deployment time to fit application requirements. Yet their monolithic design lacks isolation across components: when applications and OS components contain security-sensitive data (e.g., cryptographic keys or user data), the lack of isolation renders library OSs open to security breaches via malicious or vulnerable third-party components

    Saber: window-based hybrid stream processing for heterogeneous architectures

    Get PDF
    Modern servers have become heterogeneous, often combining multicore CPUs with many-core GPGPUs. Such heterogeneous architectures have the potential to improve the performance of data-intensive stream processing applications, but they are not supported by current relational stream processing engines. For an engine to exploit a heterogeneous architecture, it must execute streaming SQL queries with sufficient data-parallelism to fully utilise all available heterogeneous processors, and decide how to use each in the most effective way. It must do this while respecting the semantics of streaming SQL queries, in particular with regard to window handling. We describe SABER, a hybrid high-performance relational stream processing engine for CPUs and GPGPUs. SABER executes windowbased streaming SQL queries in a data-parallel fashion using all available CPU and GPGPU cores. Instead of statically assigning query operators to heterogeneous processors, SABER employs a new adaptive heterogeneous lookahead scheduling strategy, which increases the share of queries executing on the processor that yields the highest performance. To hide data movement costs, SABER pipelines the transfer of stream data between different memory types and the CPU/GPGPU. Our experimental comparison against state-ofthe-art engines shows that SABER increases processing throughput while maintaining low latency for a wide range of streaming SQL queries with small and large windows sizes

    CloudScope: diagnosing and managing performance interference in multi-tenant clouds

    Get PDF
    Š 2015 IEEE.Virtual machine consolidation is attractive in cloud computing platforms for several reasons including reduced infrastructure costs, lower energy consumption and ease of management. However, the interference between co-resident workloads caused by virtualization can violate the service level objectives (SLOs) that the cloud platform guarantees. Existing solutions to minimize interference between virtual machines (VMs) are mostly based on comprehensive micro-benchmarks or online training which makes them computationally intensive. In this paper, we present CloudScope, a system for diagnosing interference for multi-tenant cloud systems in a lightweight way. CloudScope employs a discrete-time Markov Chain model for the online prediction of performance interference of co-resident VMs. It uses the results to optimally (re)assign VMs to physical machines and to optimize the hypervisor configuration, e.g. the CPU share it can use, for different workloads. We have implemented CloudScope on top of the Xen hypervisor and conducted experiments using a set of CPU, disk, and network intensive workloads and a real system (MapReduce). Our results show that CloudScope interference prediction achieves an average error of 9%. The interference-aware scheduler improves VM performance by up to 10% compared to the default scheduler. In addition, the hypervisor reconfiguration can improve network throughput by up to 30%

    CubicleOS: A library OS with software componentisation for practical isolation

    Get PDF
    Library OSs have been proposed to deploy applications isolated inside containers, VMs, or trusted execution environments. They often follow a highly modular design in which third-party components are combined to offer the OS functionality needed by an application, and they are customised at compilation and deployment time to fit application requirements. Yet their monolithic design lacks isolation across components: when applications and OS components contain security-sensitive data (e.g., cryptographic keys or user data), the lack of isolation renders library OSs open to security breaches via malicious or vulnerable third-party components

    Medea: scheduling of long running applications in shared production clusters

    Get PDF
    The rise in popularity of machine learning, streaming, and latency-sensitive online applications in shared production clusters has raised new challenges for cluster schedulers. To optimize their performance and resilience, these applications require precise control of their placements, by means of complex constraints, e.g., to collocate or separate their long-running containers across groups of nodes. In the presence of these applications, the cluster scheduler must attain global optimization objectives, such as maximizing the number of deployed applications or minimizing the violated constraints and the resource fragmentation, but without affecting the scheduling latency of short-running containers. We present Medea, a new cluster scheduler designed for the placement of long- and short-running containers. Medea introduces powerful placement constraints with formal semantics to capture interactions among containers within and across applications. It follows a novel two-scheduler design: (i) for long-running containers, it applies an optimization-based approach that accounts for constraints and global objectives; (ii) for short-running containers, it uses a traditional task-based scheduler for low placement latency. Evaluated on a 400-node cluster, our implementation of Medea on Apache Hadoop YARN achieves placement of long-running applications with significant performance and resilience benefits compared to state-of-the-art schedulers

    SCABBARD: single-node fault-tolerant stream processing

    Get PDF
    Single-node multi-core stream processing engines (SPEs) can process hundreds of millions of tuples per second. Yet making them fault-tolerant with exactly-once semantics while retaining this performance is an open challenge: due to the limited I/O bandwidth of a single-node, it becomes infeasible to persist all stream data and operator state during execution. Instead, single-node SPEs rely on upstream distributed systems, such as Apache Kafka, to recover stream data after failure, necessitating complex cluster-based deployments. This lack of built-in fault-tolerance features has hindered the adoption of single-node SPEs.We describe Scabbard, the first single-node SPE that supports exactly-once fault-tolerance semantics despite limited local I/O bandwidth. Scabbard achieves this by integrating persistence operations with the query workload. Within the operator graph, Scabbard determines when to persist streams based on the selectivity of operators: by persisting streams after operators that discard data, it can substantially reduce the required I/O bandwidth. As part of the operator graph, Scabbard supports parallel persistence operations and uses markers to decide when to discard persisted data. The persisted data volume is further reduced using workload-specific compression: Scabbard monitors stream statistics and dynamically generates computationally efficient compression operators. Our experiments show that Scabbard can execute stream queries that process over 200 million tuples per second while recovering from failures with sub-second latencies

    Scalable and Fault-tolerant Stateful Stream Processing.

    Get PDF
    As users of "big data" applications expect fresh results, we witness a new breed of stream processing systems (SPS) that are designed to scale to large numbers of cloud-hosted machines. Such systems face new challenges: (i) to benefit from the "pay-as-you-go" model of cloud computing, they must scale out on demand, acquiring additional virtual machines (VMs) and parallelising operators when the workload increases; (ii) failures are common with deployments on hundreds of VMs—systems must be fault-tolerant with fast recovery times, yet low per-machine overheads. An open question is how to achieve these two goals when stream queries include stateful operators, which must be scaled out and recovered without affecting query results. Our key idea is to expose internal operator state explicitly to the SPS through a set of state management primitives. Based on them, we describe an integrated approach for dynamic scale out and recovery of stateful operators. Externalised operator state is checkpointed periodically by the SPS and backed up to upstream VMs. The SPS identifies individual operator bottlenecks and automatically scales them out by allocating new VMs and partitioning the checkpointed state. At any point, failed operators are recovered by restoring checkpointed state on a new VM and replaying unprocessed tuples. We evaluate this approach with the Linear Road Benchmark on the Amazon EC2 cloud platform and show that it can scale automatically to a load factor of L=350 with 50 VMs, while recovering quickly from failures
    • …
    corecore